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Rhythmic movements are crucial for animal survival, breathing, walking and swimming are prime examples of 
this. The underlying rhythmic activity is produced by circuits of central pattern generating (CPG) neurons that 
can operate independently of patterned sensory information. Other neuronal ensembles in the brain also 
show organized rhythmic activity; these oscillations may play a crucial role in neuronal computations. I am ex-
ploring the mechanisms and functions of neuronal oscillatory activity in C. elegans, an organism that can be 
interrogated at the systems, single cell and molecular level.
C. elegans food search behavior can be simplified as a cycle of forward- and reverse-directed locomotion, the 
latter being followed by post-reversal reorientation turns (Panel A).We previously described neuronal dynam-
ics underlying the switches between forward locomotion and reversals (Ref. 1). The forward locomotion state 
consists of rhythmic bends along the body, propagating from head to tail (Panel B). We started by identifying 
shorter timescale, rhythmic behaviors within the predominant forward locomotion state. 
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Open questions

Detailed behavioral analysis reveals two types of head bends: slower 
“propagated bends” and faster “head casts”. 
(A-B) Posture measurement from videos (A); timeseries as a kymogram (B). 
Black lines trace head-bends propagation. (C) Head-bend propagations are 
bimodal, indicating two distinct types. 

Ca2+ imaging screen identifies CPG candidate circuits for each behavior. 
(A) Worms are paralyzed and immobilized in a microfluidic device for 
pan-neuronal imaging using a genetically-encoded fluorescent calcium indi-
cator (GCaMP). (B) Maximum intensity projection of a whole-animal widefield 
deconvolution GCaMP6f recording. (C) Example recording. Each row shows 
the activity of one neuron. Spontaneous neuronal population dynamics corre-
spond to behavioral command states (Ref. 1). (D) Neuronal activity traces of 
candidate motor neurons (MNs). (E-F) MN oscillators show significant covari-
ograms with a limited set of other neurons, anatomical locations seen in (F). 
(G) Inhibition of candidates using a histamine-gated chloride channel (hisCl) 
shows they oscillate independently. B-MNs targeted with a ventral nerve cord 
(VNC) driver. (H) SMD inhibition decreases head-cast frequency; VNC inhibi-
tion abolishes prop-bends.
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Neuronal oscillators are multi-functional depending on behavioral state. 
(A) Forward/reverse state modulates DB02 and SMD activity in freely-moving 
animals. (B) SMD activity is strongly coupled to reversal command end. (C) 
SMDs promote reverse-to-forward state transitions

Inputs from AIB and RIM interneurons modulate SMD oscillators. 
(A, C) SMD activity could be modulated in forward/reverse through circuit in-
teractions. Thus, we assessed the role of presynaptic AIB through hisCl inhi-
bition (A) and RIM (C). (B) AIB inhibition abolished the forward/reverse modu-
lation of SMD frequency and SMDD amplitude. (C) RIM affects head oscilla-
tions via tyramine and SMDs express LGC-55. Thus, we tested tyramine bio-
synthesis (tdc-1) and lgc-55 mutants. (D) Both mutants were defective in the 
forward/reverse modulation of SMDD frequency, but no other parameters.
For more information see Ref. 2. 

We identified that motor neurons RME and VB01 show activity correlations to the SMDs and could therefore be part of CPG subcircuits (Fig. 2E). 
What role do these neurons play in rhythm generation and/or SMD activity? 

Do electrical connections play a role in SMD rhythmic activity? How important are gap junction inputs from circuit participants?    

SMDD and SMDV show antagonistic, rhythmic activity. How is this antagonism achieved and is it required for rhythm generation? Can SMDD and 
SMDV oscillate on their own? Are cholinergic and/or GABAergic signaling involved in establishing this antagonism?

How are the propagated-bend (motor neurons DB01/DB02) and head-cast (SMD/RME/VB01) oscillators coupled to ensure fluent movement? 


